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The development in space and time of a plane initial disturbance to a spatially uniform 
exploding atmosphere is analysed on the assumption that the disturbance amplitude 
is comparable in magnitude with the inverse (dimensionless) activation energy of the 
explosion reaction. Particular attention is focused on the shock-fitting problem, 
which has features that distinguish it from its inert-atmosphere counterpart. 

Using the positive half of a sine wave to typify an isolated compression perturbation, 
it is found that the amplifying effect of the ambient reaction leads to very rapid shock 
wave development, which depends significantly on the spatial extent of the disturb- 
ance. The latter also influences the question of whether local explosion (local explosion 
is recognized here as a logarithmically unbounded growth of the disturbance amplitude; 
in other words as a local breakdown of the present approximations) occurs a t  the 
shock wave or some distance behind it. The subsequent evolution of these two states 
will no doubt be significantly different, but the answer to this speculation must await 
extension of the present theory to encompass the rapid events that ensue near the 
local explosion regions. 

1. Introduction 
The present paper is a further step in the study of the behaviour of finite amplitude 

disturbances propagating through a spatially uniform exploding atmosphere. An 
earlier work (Clarke 1978) has analysed the response of arbitrarily small amplitude 
plane disturbances in the absence of transport effects and also identified an important 
distinguished limiting case for which the disturbance amplitude is of the same order 
as the appropriately non-dimensionalized inverse activation energy of the ambient 
explosion reaction, assumed small of course. Some preliminary results for this dis- 
tinguished limiting case were described and agree with the conclusions reached by 
Blythe (1978), who independently analysed the consequences of the same distinguished 
limit. 

When the imposed initial disturbances to the ambient atmosphere are compressive 
in character (in other words when they represent local increases of gas temperature) 
the small disturbance solutions that result from the theory ultimately become multi- 
valued and require the introduction of appropriate Rankine-Hugoniot shock dis- 
continuities. Such a result is hardly a surprise, but the crucial role of the ambient 
explosion reaction as an amplifier of gasdynamic disturbances makes its presence felt 
in the general evolution of the perturbations and makes the shock-fitting exercise 
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essentially more awkward than its now classical counterpart for chemically inert 
atmospheres. After a brief resume of the general explosive-atmosphere results, the 
present work focuses its main attention on the two related questions of shock-fitting 
and the development of locally explosive behaviour . 

2. General solutions 
Consider the pair of dimensionless independent variables E, T defined so that 

C = (afit-z)/€afiYtign, T = t/~tign, (1) 

where t is the time, x measures spatial location, ufi is the initial (t = 0) frozen sound 
speed in the explosive gas mixture, y is the frozen specific heat’s ratio (assumed 
constant), tign is an ignition time, whose precise definition is not important at this 
particular stage of the work (but see Clarke 1978), and E - ~  is the dimensionless 
activation energy of the irreversible chemical reaction 

nF-+P. (2) 

It has been shown by Clarke (1978) and also independently by Blythe (1978) that, 
when the gas velocity u in a planar disturbance superimposed upon an ambient 
homogeneous (adiabatic) explosion is O(s) ,  so that one can write 

(3) 

( 4 4  

(4b) 

u(x,  t )  = €af, u y t ,  T) + . . . , 

2( I - y T )  (a~( l ) /aT)~  = exp [(y - 1) ufl)] - 1, 

(JiJaT), = - t(r + 1) u(l)+ &In (1  - yT), 

then u(l) satisfies the nonlinear equation 

[see equations (60a, b )  and (62) in Clarke (1978) or Blythe’s (1978) equation (3.12)]. 

as follows : 
The dimensional pressure p and density p differ from their initial values poi and pr 

1, -poi = €pi a&p(”(5, T) + . . . , ( 5 a  1 
p-pi = € p p ( t , T ) +  ..., ( 6 4  

p(1) = u(1) - (I/?) 1 n (1 -YT), ( 5 b )  

pel' = u(1). ( 6 b )  

where 

The mass fraction c of the reactant F behaves like co(T) + eZc(1) and so its additional 
gasdynamically induced variations play no part in the first-order theory that seeks 
to evaluate u(l) in the neighbourhood of the frozen wave-head. It also follows from 
the thermal equation of state 

p = pRO (71 

that @(I) = (y-1)u(1)-ln(I-yT), ( 8 4  

0 = ooi + €OOi O(l)(C, T) + . . . . 
where the absolute temperature 0 is written in the form 

(8b)  

For simplicity R is assumed not to depend significantly on the mass fraction c. 
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Equations (8) show that (y  - l)u(’)is the additional temperature that is superimposed 
on the ambient field by the gasdynamic disturbance. The terms in In (1 - y T )  in ( 5 5 )  
and (8a)  represent a first approximation, the ‘small-depletion ’ approximation as it is 
often called, to the progress of the ambient explosion. (It is evidently somewhat 
neater to work in terms of a time yT rather than T as defined in (1); the latter time, 
together with the other notation used here, appears in Clarke (1978) and so is retained 
in order to make reference back to that work more direct.) 

The solution of the initial value problem for (4) is readily found to be 

(y  - 1) dl) = - In { 1 - ( 1 - exp [ - (y - 1) ui] ) ( 1 I yT)-(y-1)’2y}, (9) 

where 

1-YT 
g =  5+-  lnsds=F(P,T) ,  

2Y 1 

and ui = uy)(/3) = u(l)(ET=o, 0) (12) 

is the given initial value of u(l). 
is there- 

fore related to - x ,  as can be seen from (1) .  It is convenient to work in terms of [ 
from now on [see equation (lo)]. With the information that a; = yRO it  can be seen 
that p is the co-ordinate 

Note that the parameter ,8 has been selected so that p = 5 a t  T = 0 = t ;  

where afa(t) is the time-dependent ambient frozen sound speed, with the latter 
evaluated in accordance with the approximation in (8). Therefore c i s  a label for the 
left-to-right propagating characteristics in the spatially uniform ambient atmosphere. 
Their change of shape with time is of course significant, but not crucially so in what 
follows, so that it is useful to be able to conceal this information within the variable %. 

3. Comparison with inert-atmosphere results 
In  initial-value problems of the present type which deal with propagation through 

inert atmospheres the solutions corresponding to (9)-( 12) are usually as far as one 
need go in order to acquire a satisfactory appreciation of the physical significance of 
the results. To be sure one may need to introduce shocks into the system, but the 
methods for doing this, together with numerous illustrative examples, are now well 
documented (e.g. Whitham 1974, especially chapter 2; Lighthill, 1978, $3 2.10, 2.1 1) 
and the whole theory of discontinuous shock wave behaviour in inert systems is in a 
very satisfactory state, particularly for relatively weak waves. Thus, if ui in (1 2) is 
known to be f (P) ,  the inert gas solution, in present terminology, is 

(13) U‘”(t,  T) = f ( P ) ;  5 = c = 3YP7 T) = P- HY + l)f(P) T, 

and i t  is clear that the solution is essentially simpler than (9) and (10) above. 
One especially significant fact to note is that the quantity F(P,  T) - /3 in (1  3) is a 

separable function of ,8 and T, whereas this is not so in the case of the explosive 
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atmosphere (see equation (11)). This has an important effect on the shock-fitting 
problem, as will be shown below. The need to introduce a discontinuous shock wave 
into the field only arises when F(P,  T) is such that more than one value of $ leads to 
the same value of [for a given T .  This can only happen if aF/ap vanishes somewhere 
(i.e. if the family of curves [ - F ( P , T )  = 0 has an envelope). At the initial instant 
aF/a/3 = 1, with the consequence that a shock will first be required where aF/ap and 
a2F/ap2 vanish simultaneously. 

Consider the particular case 

ui = f(P) = a sin (bp), 0 d b,8 d n, (14) 

= 0, b/3 < 0, 7~ < b/3, 
with a =l= 0 and b > 0. 

For the inert gas (13) shows that 

aF/ap = 1 - ~ ( 7  + 1) a b  cos (bp) T ,  (15) 

(16) a2F/ap2 = g(y + 1) ab2sin (bp) T.  

When T > 0 these quantities can only vanish simultaneously when bp = 0 or n and 
&(y + 1) abT = 1 (which implies that a 2 0, respectively). This is the familiar result 
that a shock wave will begin to form a t  the head, bp = 0, (tail, bp = n) of a compression 
(expansion) pulse after a particular lapse of time. 

Making the substitution (14) into (1 1 )  demonstrates that there is no simple parallel 
to (15) and (16) in the case of disturbance propagation through an exploding atmo- 
sphere. However it is possible to evaluate aF/ap and a2F/ap2 exactly at /3 = 0. In  
the latter case it is convenient to leave the expression in the form 

where Q (1 - yT) ,  u ( y -  1)/2y > 0, 

and u;(O), ~ “ ( 0 )  are the first and second derivatives of ui with respect to ,13 evaluated at 
,13 = 0. With ui given by (14) uT(0) is zero and, since Q-a 2 1, it follows that azF/a/32 
is essentially negative a t  /3 = 0 for all T .  

The inference is that  the shock wave does not form a t  the head of this particular 
compression pulse (attention is focused on the case a > 0 from now on) when it 
propagates into an exploding atmosphere. The reason for this lies in the additional 
distortion of the pulse profile as a result of the chemical influences; the inert-atmosphere 
pulse only suffers distortion from the now familiar nonlinear convective effects, which 
are still present in the explosive atmosphere situation but which, as just remarked, 
are now augmented by the influence of the chemistry. 

There is no simple analytical method of assessing just where a shock wave will form 
in the explosive situation but some general statements can be made, and illustrations 
provided, for particular values of the numbers a, b for example, as will shortly be 
demonstrated. 
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4. Shock-fitting 
With the assumption that the time of passage of a fluid element through a diffusion- 

resisted shock wave is very small compared with the local chemical time i t  is correct 
to treat the discontinuities that may be required in the solution (9)-( 12) as Rankine- 
Hugoniot discontinuities across which the chemical composition is constant, or frozen. 
When such waves are weak one can exploit the result that their propagation speed is 
the arithmetic mean of the frozen wavelet speeds on either side of the shock to a first 
order, and write 

= (;)p*+ 

where pl, P2 are the frozen-wavelet labels ahead of and behind the shock respectively. 
From (1)  and (10) a similar relationship holds with [ in place of x and T in place of t 
and, in consequence, the shock wave location is found from the relations (N.B. ls is 
the value of 5 on the shock) 

(18) ls = F(P1, T )  = F(P2, TI, 

When F takes the form P-f(P)g(T)  the function g(T) can be eliminated from (19) 
and the result integrated to give the famous 'equal areas' rule 

J h 

(see Whitham (1974) and Lighthill (1978)). 
With the non-separable form of F(P,  T )  found in (1  1)  the task of discovering the 

Pl(T) and B,(T) relationships on the shock wave becomes much more awkward. If 
the shock propagates into the spatially uniform parts of the atmosphere F(P,,T) 
reduces to P1, since ui = 0 in such regions [see equation (ll)]. Elimination of /I1 
between (18) and (19) is then possible, with the result that 

The partial derivatives of F with respect to p2 and T can be found from (1  1)  so that, 
although no analytical solution of this nonlinear first-order equation is possible here, 
it is in a suitable form for numerical integration, once its initial values are known. 

The previous section has shown that the shock does not form a t  the leading edge 
P = 0 of the compression pulse, so that it does not propagate into spatially uniform 
gas, a t  least in the early stages of its history, and (31) therefore cannot be used at  early 
times after shock formation. In the immediate neighbourhood of the shock-formation 
location, let us say / I f ,  T,, a series development of the functions in (18) and (19) shows 
that 
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(If $: = $, -I- A$: denotes the values of $ at the locus of vanishing aF/a$ it  transpires 
that A$:,I3 = A$*; this fact provides a useful check on the numerical accuracy of 
subsequent numerical calculations.) Observing that a3F/aB3 and a2F/ap aT a t  $,, TI 
can be shown to be, respectively, positive and negative, it  is possible to use (22a)  to 
trace the approximate shock path until it intersects the pulse head at $ = 0, provided 
that pf is suitably small. It will be shown by example below that Bf is sufficiently small 
in several interesting cases, so that the task of locating the shock for such compression 
pulses is now accomplished, first, by evaluation of $,, T, from the conditions 

aF a2F _ -  wO=- aP2 
and, second, by integration of (21) with initial conditions 

(23) 

The results of some numerical calculations obtained in this way are given below. 
There is one particularly important feature of the shock waves that fit into the 

solution (9)-( 12) that can be described in general, as opposed to particular (numerical), 
terms. However it does depend upon a number of facts, about the function F especially, 
and it is appropriate to accumulate these facts at this juncture. First note from (9) 
that there exists a time T,, defined by 

(1 - yT,)-(y-l)/2~ = { 1 - exp [ - (y - 1)  ui]} ( 2 5 )  

for any given value of $ and hence of ui, at  which u(l) becomes logarithmically infinite. 
Such an event is similar to the one that is encountered in the simple 'small-depletion' 
(of the reactant F )  model of a spatially homogeneous explosion (e.g. Clarke 1978). 
Since T,  depends upon spatial position through its dependence upon $ it  will be called 
the local ezpbsion time. It is also important to observe from (11) and (25) that 
{F(P,  T,) -p }  depends only upon the value of ui; also F($, T,) is essentially finite with 
/3 2 F(P, T) 2 F(P, T,) for 0 < T < T,. 

The spatially homogeneous explosion ignition time TI,, is defined to be the value 
of T, for a zero value of ui, whence (25) shows that 0 < < T,,, for compression 
waves, which have ui > 0. 

The derivative of F with respect to P plays an important part in fixing the location 
of a shock wave as can be seen from (19). Its value can be written in a reasonably 
concise form as follows : 

where u = l-exp[-(y-l)ui(/3)], 

a = (y -  1)/2y.  

It is apparent that, for a given value of $, aF/i?P diminishes monotonically in the 
interval 1 aF/ap > -a as T increases in 0 < T < T,, provided that du ldp  > 0. 
When d u l d p  < 0, aFla,8 > 0 for all T in 0 < T < T,. When T -+ T,, aF/a~3+ f co for 
du/d$ 5 0, respectively. 
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fi 

FIGURE 1. This figure illustrates schematically the variations of the function P(P, T) = E with /3 
for a number of different times T for a simple initial compression pulse. The pulse has a single 
maximum for ui at /3 = Pm. The sketch can only be properly comprehended by reference to the 
text, which defines all of the symbols that appear. The whole of 3 4, especially from (24) onwards, 
can properly be thought of as an extended caption to this figure. 

An exceptional case occurs a t  a stationary value of u, and hence of ui, when 
aF/a/3 = 1 for all T in 0 < T < T,. If the stationary value corresponds with a local 
maximum in ui ( > 0 )  the associated value, T,, of T, is locally a minimum. 

If To is the value of T a t  which aF/a/? vanishes for a given ,6 the previous remarks 
show, first, that such a value exists for all situations that have da ldp  > 0 and, second, 
that  0 < To < T, for any given permissible value of p. One can deduce that aF/a,8 
must be positive when /3 = p2 (see (18), (19)) whence it follows that, i f  a shock exists 
a t  a given value of ,8 = /I2 = pt, say, its time of occurrence T,, must be such that 
0 < qt < Tot < Td for the given /3 = pt. This state of affairs is illustrated in figure 1. 

Suppose that ui has an absolute maximum positive value where ,8 = p,. The 
associated local explosion time T, is an absolute minimum, say T,, and aF/a,8 = 1 
a t  p,. With T = Tern in (26) it is, for any given range of a, always possible to find a 
disturbance with positive values of du ldp  so small that aF/a,8 > 0 for any /3 in 
0 6 /3 < j3,. It follows from the monotone behaviour of aF/a/3 described above that 
aF/ap > 0 for all T < qm. Under such conditions, which broadly correspond with the 
initial perturbations being sufficiently stretched out in physical space, a shock wave 
will not form before local explosion takes place a t  the peak of the disturbance. This 
state of affairs constitutes case (iv) in the next section. 

For any given range of values of ui, and hence of u, it is only necessary to reduce 
the length scale over which they initially arise in order to increase the positive values 
of d u / d p  to levels which will make aF/ap = 0 for a whole set of values ofT in 

TI < T < T, 
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0.2 

Shock forms here 0.11 - 
I 

?- at y T  = 0.22905 - 

3 2 1 0 
0.22905 = y T  
n 

7r $ 
FIGURE 2 .  (a) Variations in the disturbance profile with 3 (defined in (1) and (10)) for given times 
T prior to the formation of a shock wave. The initial prckle is 2 sin j at T = 0. Note the growth in 
the amplitude of the disturbance peak. (b )  Details a t  location A A .  

[N.B. T, is defined prior to (ZS)]. Frozen Rankine-Hugoniot shock discontinuities 
must be fitted into the field in these circumstances (figure 1 illustrates the multi- 
valuedness in the solution for p = F(P,  T) that would result if a shock is not intro- 
duced) and it is important to observe that the relevant /3z-locus may lie in the range 
pz < /3, for all times T in Tf < T < q,. Figure 1 illustrates this condition, with the 
curve from (f) to (a )  for a simple compression pulse with a single maximum for ui; it 
is exemplified by case (iii) in the next section. Under such conditions the shock is 
physically separated from the region of local explosion a t  the peak of the disturbance, 
as can be seen from points (a )  and ( b )  on figure 1.  

Figure 1 also illustrates the rather unusual disposition of the various curves and 
loci that confirm the possibility of this relationship between the shock wave and the 
local explosion, which latter event takes place a t  the point ( b )  on the figure. 

When the length scale of the disturbance is still further diminished the situation 
illustrated in figure 1 does not change qualitatively, save for the important case of the 
/3,-locus. As illustrated by the dotted line from (f) to ( c )  the shock can now cut off 
the peak of the initial disturbance, in which case the shock must ultimately encounter 
a point of local explosion, as depicted on figure 1 at point (c )  at the time Tot. This is 
exemplified by case (i) in the next section; case (ii) is very close to the particular 
circumstance for which the shock and the earliest local explosion at  ( b )  coincide. 

5. Typical compression pulses 
Selection of an initial compression pulse shape as described in (14) enables one to make 

a number of computations which illustrate typical features of the pulse behaviour that 
can be encountered in an exploding atmosphere (N.B. a > 0 for compression pulses). 

Prior to the formation of a shock wave, straightforward selection of a value for /3 
enables one to calculate dl) as a function of (for any chosen yT by using results (9)-( 12). 
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FIUURE 3. Continuation of figure 2 for times after shock formation. The shock grows in strength, 
' swallowing' the disturbance peak shortly after yT = 0.38, and continuing to grow until shortly 
after yT = 0.75 when the disturbance becomes locally infinite (local explosios) at the shock. 

Some typical profiles of ( y  - 1) d1) (recall the significance of ( y  - 1) u(l) as a temperature 
perturbation; see (8)) versus p a t  fixed y T  values appear in figure 2 (for b = 1 )  and 
figure 4 (for b = &), all for the single case of ( y -  1)a = 2, y = p. (Figure 3 is a con- 
tinuation of figure 2 for times after shock formation.) Some pre-shock results for 
( y  - 1 )  a = 2, b = & have also been calculated by Blythe and are in general agreement 
with those exhibited here. 

The usual steepening of the compressive and flattening of the expansive parts of the 
pulse are apparent but in addition it is clear, from the increase in peak values with 
increasing y T  for example, that the disturbance is undergoing a general amplification 
(see e.g. figure 2).  One effect of this is seen near the head of the pulse at  y T  = 0.22905 
for ( y  - l ) a  = 2, b = 1 (see figure 2 )  and a t  y T  = 0.55074 for ( y -  1 )  a = 2, b = Q (see 
figure 4), where the velocity profile first achieves the vertical slope that signifies 
satisfaction of conditions (23). From these times onwards shock waves must be 
introduced into the field and it is observed that, as a result of the explosion-induced 
amplification, they form, not a t  the wave head p = 0 but some way behind it; to be 
precise a t  the values of Pf listed in table 1.  This exemplifies the statements made in 
earlier sections. 

Calculation of ,!If, Tf is most expeditiously made as follows. Both aF/ap and aaF/ap2 
can be calculated analytically from direct differentiation of (1  1 ) .  A few numerical values 
of aF./ap for different T a t  /3 = 0 quickly indicate the time for which this quantity 
vanishes. Further calculations of aF./ap for fixed times near to the one just discovered 
permit simple interpolations to locate the desired simultaneous vanishing of both 
p-derivatives of F. The values of and FpTf required in (22a)  or (24) then follow 
from substitution of pf, Tf into the analytically determined derivatives. 
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FIGURE 4. (a) Disturbance profiles evolving from 2sin($5) at T = 0. Local explosion occurs 
behind the shock shortly after yT = 0.63595 (see points marked +). ( b )  Details at location AA.  

b bPf YTf 

1 
3 
b 

0.04000 
0.0976 1 
0.14 156 

0.22905 
0.44731 
0.55074 

TABLE 1. Point of shock formation for various values of b. 

Equation (21) with initial conditions (24) is now integrated using a simple fourth- 
order Runge-Kutta method, with Simpson’s rule employed to evaluate the integral 
that appears in aJ’/ap. Very small step sizes are required initially, since Pz grows very 
rapidly with T (N.B. dp,/dTcc T-4 near p,, T,) but these are readily increased as the 
integration proceeds, especially as the computations can all be performed on a Texas 
Instruments TI  58 hand-held programmable calculator which allows immediate user 
control of quantities like step size. 

The p2, T relationship that results from these integrations can readily be converted 
into variations of [8 with T and also of the jump in (y - 1)  dl), written as [ (y  - 1) 
at  the shock; results are depicted in figures 5 and 6 respectively. They are also in- 
corporated into figures 3 and 4 to complete those illustrations, of the profiles of 
(y  - 1) dl) versus [for various times, that began with figure 2. 

Three values have been selected for b (see table 1) and the main results of the analysis 
are discussed for each in turn. 
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0 

is 
FIGURE 5. The development of shock position with time; z3 = 0 is the locus of the 
ambient atmosphere characteristic through the initial profile head. The initial profile 

* A 

(7 - 1) (6 ,  0) = 2 sin b(. 

undisturbed 
is 

(i) b = 1.  The variation with time yT of the jump in (y - 1)  dl) across the shock 
that forms a t  yT = 0.22905 is depicted in figure 6 and is also compared with the 
inert-gas result. The latter has the same initial pulse form of course but its strength 
is given, in general, by 

[ ( y -  1)u(l)] = 4(y- l)(~ab(y+l)T-l)~(b(y+l)T)-l .  

&b(y+ 1)  Tfi = 1, 

(271 

(28) 

The inert-gas shock forms at a time Tfi such that 

as already noted in 9 3, and achieves a peak strength of u(I) = a at the time Tmax, 
where 

T,,, = 2Tfi. (29) 

As a result of the chemically induced amplification Tfi is here slightly later than Tf ,  
but the most noteworthy feature of the development of shock strength in the present 
case is its monotone increase with increasing time. It can be seen from figure 3 that 
the shock wave ' swallows ' the peak of the disturbance shortly after the time yT = 0.38, 
which is substantially earlier than the similar occurrence at  T,,, in the inert-gas case. 
Equation (29) shows that the latter is given by yT,,, = 0.46 when b = 1.  

The shock in the exploding gas continues to grow in strength, but now with great 
rapidity and in such a way as to carry along the maximum temperature value im- 
mediately downstream of the shock. Figure 3 shows that aT/agis now positive every- 
where in the disturbance (recall the definitions of [ and in (10) and (1)  respectively). 
At a yT of 0.75, where Pz takes the value 2.11016, the shock strength [ ( y -  l ) u 9  
achieves a value of 8.958.. . and very shortly (well within a yT interval of becomes 
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YT 
* 

FIGURE 6. The growth of shock strength with time T for the initial profiles ( y  - 1) &)ti ,  0) = 2 sin bf  
compared with behaviour from the same initial state in an inert atmosphere. Note the exceptional 
rapidity of the growth in the shock strength as the disturbance length increases (i.e. as b decreases), 
as well as the amount by which the explosive-atmosphere shock strength exceeds the inert-gas 
maximum value of 2 before local explosion intervenes. 

logarithmically infinite. Evidently the compressive heating of the ambient explosive 
material has so progressed, in this case specifically through the agency of a Rankine- 
Hugoniot shock discontinuity, that a local explosion has taken place. Alternative 
descriptions of this event are ‘ignition ’ or ‘thermal runaway ’; however one describes 
it, the breakdown of the present theory signifies that it is now necessary, certainly 
locally, to pay careful attention to the roles of transport effects and of the consumption 
of reactant material. The former have so far been ignored and the latter has not yet 
played a part in the theory, which is of first-order accuracy only, as can be appreciated 
from Clarke (1978). 

It is interesting to observe that the local explosive event occurs substantially 
before the related inert-gas shock subsides into its T-9 decay phase [see equation 
(27)]. The advance of the local explosion time ahead of the similar homogeneous event 
a t  yT = 1 is also considerable enough to make the simple zero-depletion approximation 
to the ambient behaviour, which is inherent in the present fist-order theory, quite 
acceptable (cf. Clarke 1978, figure la)  for values of e < lO-l, say. 
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(ii) b = 4. For this value of b the compression pulse is initially stretched out to 
twice the length that it had in the previous example, with consequent reductions in 
initial slopes at given values of ui, but it is otherwise unchanged. Figure 6 shows that 
the shock now does not form until yT = 0.447.. . , but still noticeably earlier than its 
inert-gas counterpart, which has a y q i  value [see equation (26)l of 0.46. Figure 6 also 
illustrates the fact that the shock's subsequent development is very much more rapid 
than for the b = 1 pulse. Indeed the present shock becomes stronger than the b = 1 
shock for times yT in excess of about 0.56. 

When ( y  - 1 )  ui has its maximum value of 2 it  can be seen from (9) that (y - 1) 
becomes logarithmically infinite as yT -+ 0.638.. . . Evidently this signifies the develop- 
ment of a local explosion which grows from the peak of the imposed disturbance. In  
the previous, b = 1, case this peak was swallowed by the shock before local explosion 
could be achieved but in the present case the arrival of the shock wave at the (always 
amplifying) peak coincides almost exactly with the unimpeded occurrence of the local 
ignition. This state of affairs is illustrated in figure 6 where the shock-strength curve 
intersects the line drawn a t  yT = 0.638.. . when ( y  - 1) u(l) N 7. Evidently the present 
RankineHugoniot shock is not quite as strong at  this time of the intervention of the 
local explosion as it is in the previous situation, but it is interesting to see that its 
time of growth to this point is only about 40% of the time taken in the initially 
sharper pulse. Figure 5 shows that the extent of the advance of the shock ahead of the 
line p = 0 is significantly smaller for b = 8 than it is for b = 1. 

(iii) b = f . Further spreading out of the initial disturbance by selection of the present 
value for b illustrates another feature of the evolution of compression pulses in an 
exploding atmosphere. Figure 6 shows yTf at 0.550.. . , compared with the inert-gas 
yTft = 0.583, followed by an even more rapid rate of growth of shock strength with 
time than appears with either of the two previous disturbance shapes. 

A number of profiles of (y - 1) u(1) versus g for fixed T values are shown in figure 4, 
which depicts conditions a t  the shock-formation time yT, = 0.550.. . , as well as the 
important new feature. This is the fact that the disturbance peak is now allowed to 
grow unimpeded towards its logarithmic increase near yT = 0.638.. . , while the shock 
wave is still growing in the leading, or compressive, parts of the disturbance. The 
value and position of ( y  - 1) u(1)(p2) a t  the unimpeded local explosion time is indicated 
by a small cross on figure 6, with the similar small cross to its left on this figure marking 
the location of the local explosion point. 

Comparison of the profiles for yT = 0.63595 (on figure 4) and yT = 0.74 on figure 3 
is interesting, and hints strongly at different patterns of evolution of the gas dynamics 
and chemistry at and beyond the times of breakdown of the present theory. 

The shock wave in the present, b = %, case continues to grow in strength until a 
local explosion occurs on its downstream side; the earlier advent of the explosion a t  
the peak strictly invalidates such results and the portion of the b = 5 curve that lies 
to  the right of yT = 0.638 ... on figure 6 or above this yT value on figure 5 should 
properly be discounted. 

(iv) Smaller values of b. Continued stretching-out of the disturbance by the selection 
of successively smaller values of b will ultimately lead to a situation for which no 
shock wave will form before the occurrence of local explosion at  the disturbance peak. 
The evidence is that this occurs for b little smaller than 4 and well before b is as small 
as 4. It is of course true that the chemical amplification will produce a shock wave 
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before homogeneous explosion takes place. However the occurrence of a local explosion 
strictly demands that the present theory should be discontinued at that time and 
replaced by one which takes more careful account of the behaviour near to, and as a 
result of, these dramatic chemico-gasdynamical events. The style and extent of the 
failure of the present theory will indicate how such a new theory is to be constructed. 
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